UCSD - Physics 120 - Spring 2019 — Midterm Solutions

Jacob Saret, Head TA

$16^{\text {th }}$ May, 2019

This exam was scored out of 100 points. The average \pm stdev was 56.4 ± 17.7 this quarter. The distribution of scores for the class is shown in Figure 0 below.

Figure 0: The grade distribution. The black bar indicates the average.

Problem 1. 34

We have a resistor in series with an inductor and capacitor in parallel, with values R, L and C respectively. The question concerns the total impedance between either end of this circuit.

Problem 1a. 15
These elements have impedances $Z_{R}=R, Z_{L}=i \omega L$ and $Z_{C}=\frac{1}{i \omega C}$. 5
So, recalling that elements in series add linearly, and elements in parallel add inversely, 5

$$
\begin{align*}
\hat{Z}_{\mathrm{eq}}(\omega)=R+(L \| C) & =Z_{R}+\left(\frac{1}{Z_{L}}+\frac{1}{Z_{C}}\right)^{-1} \\
& =R+\left(\frac{1}{i \omega C}+i \omega L\right)^{-1} . \tag{1}
\end{align*}
$$

So, after some simplification, 5

$$
\begin{equation*}
\hat{Z}_{\mathrm{eq}}(\omega)=R+\frac{i \omega L}{1-\omega^{2} L C} . \tag{2}
\end{equation*}
$$

Problem 1b. 11
First, let's combine the fraction and divide by R,

$$
\begin{equation*}
\frac{\hat{Z}_{\mathrm{eq}}(\omega)}{R}=\frac{R-\omega^{2} R L C+i \omega L}{1-\omega^{2} L C} . \tag{3}
\end{equation*}
$$

The magnitude we're interested in is then given by

$$
\begin{align*}
\left|\frac{\hat{Z}_{\mathrm{eq}}(\omega)}{R}\right|^{2}=\frac{1}{R^{2}} \hat{Z}_{\mathrm{eq}}^{*} \hat{Z}_{\mathrm{eq}} & =\frac{1}{R^{2}} \frac{R-\omega^{2} R L C+i \omega L}{1-\omega^{2} L C} \frac{R-\omega^{2} R L C-i \omega L}{1-\omega^{2} L C} \\
& =\frac{\omega^{2} \frac{L^{2}}{R^{2}}+\left(1-\omega^{2} L C\right)^{2}}{\left(1-\omega^{2} L C\right)^{2}} . \tag{4}
\end{align*}
$$

Note then that $\frac{L}{R} \ll R C$ and thus the first term can be dropped, so finally 2

$$
\begin{equation*}
\left|\frac{\hat{Z}_{\mathrm{eq}}(\omega)}{R}\right|^{2}=\frac{\left(1-\omega^{2} L C\right)^{2}}{\left(1-\omega^{2} L C\right)^{2}} \Rightarrow\left|\frac{\hat{Z}_{\mathrm{eq}}(\omega)}{R}\right|=\frac{1-\omega^{2} L C}{1-\omega^{2} L C} \tag{5}
\end{equation*}
$$

This is flat at zero dB except for a infinitely positive delta function at $\omega=\sqrt{L C}$. 3
Our hand-drawn Bode plot is shown in Figure 1 below. 6

Figure 1: Bode Plot of $|\hat{G}(\omega)|$ for Problem 1b.

Problem 1c. 8
The phase is given by 2

$$
\begin{equation*}
\phi=\arg \left(\frac{\operatorname{Im}\left[\hat{Z}_{\text {eq }}\right]}{\operatorname{Re}\left[\hat{Z}_{\text {eq }}\right]}\right)=\arctan \left(\frac{\operatorname{Im}\left[\hat{Z}_{\text {eq }}\right]}{\operatorname{Re}\left[\hat{Z}_{\text {eq }}\right]}\right) . \tag{6}
\end{equation*}
$$

As before, since the only imaginary part is controlled by a factor of $\frac{L}{R} \ll R C$, we know that $\phi \approx \arctan (0)=0$ for all $\omega \neq \sqrt{L C}$. However, as ω approaches $\sqrt{L C}$ from below, we see that ϕ will approach $+\frac{\pi}{2}$. Conversely, as we approach from above, ϕ will approach $-\frac{\pi}{2} .2$

So, we can construct a crude Bode plot from this, shown in Figure 2 below. 4

Figure 2: Bode Plot of $\phi(\omega)$ for Problem 1c.

Problem 2. 31

We have an ideal op-amp with a negative feedback network; a resistor and inductor in series at the input, and a resistor and capacitor in parallel as feedback. The question concerns the complex gain of this circuit.

Problem 2a. 15
We'll start with our favorite op-amp equation, 1

$$
\begin{equation*}
V_{\mathrm{out}}=A\left(V_{+}-V_{-}\right) . \tag{7}
\end{equation*}
$$

Seeing that $V_{+}=0$ and substituting, 1

$$
\begin{equation*}
V_{\text {out }}=-A V_{-} . \tag{8}
\end{equation*}
$$

Now, we can match currents, 6

$$
\begin{equation*}
\frac{V_{\mathrm{in}}-0}{R+i \omega L}=\frac{0-V_{\text {out }}}{\left(\frac{1}{R}+i \omega C\right)^{-1}}, \tag{9}
\end{equation*}
$$

and solve for the complex gain in the limit that $A \rightarrow \infty, 6$

$$
\begin{equation*}
\hat{G} \equiv \frac{V_{\mathrm{out}}}{V_{\mathrm{in}}}=-\frac{\left(\frac{1}{R}+i \omega C\right)^{-1}}{i \omega L+R}=-\frac{R}{(1+i \omega R C)(R+i \omega L)} . \tag{10}
\end{equation*}
$$

Problem 2b. 16
Let's take the magnitude of \hat{G},

$$
\begin{align*}
|\hat{G}|=\sqrt{G G^{*}} & =\sqrt{\frac{R}{(1+i \omega R C)(R+i \omega L)} \frac{R}{(1-i \omega R C)(R-i \omega L)}} \\
& =\sqrt{\frac{R^{2}}{\left(R^{2}+\omega^{2} L^{2}\right)\left(1+\omega^{2} R^{2} C^{2}\right)}} . \tag{11}
\end{align*}
$$

In standard form,

$$
\begin{equation*}
|\hat{G}|=\left(1-\frac{L^{2}}{R^{2}} \omega^{2}\right)^{-\frac{1}{2}}\left(1-R^{2} C^{2} \omega^{2}\right)^{-\frac{1}{2}} \tag{12}
\end{equation*}
$$

Given that $R C=10 \frac{L}{R}$,

$$
\begin{equation*}
|\hat{G}|=\left(1-\frac{L^{2}}{R^{2}} \omega^{2}\right)^{-\frac{1}{2}}\left(1-100 \frac{L^{2}}{R^{2}} \omega^{2}\right)^{-\frac{1}{2}} \tag{13}
\end{equation*}
$$

There are two poles here, both first order, $\omega_{1}=\frac{L}{R}$, and $\omega_{2}=10 \frac{L}{R} .4$
So, putting this on our Bode plot as discussed in the review session, we'll have - 20 dB per decade after the first pole, and they'll stack to -40 dB per decade afterwards. 4

As for the asymptotes, we don't have a constant in front, so we start at 0 dB , and the gain drops to zero ($-\infty \mathrm{dB}$) as ω grows. 4

Finally, our hand-drawn Bode plot is shown in Figure 3 below. 4

Figure 3: Bode Plot of $|\hat{G}(\omega)|$ for Problem 2b. The black bars indicate break frequencies.

Problem 3. 20

We have a diode clamp, with a resistor to prevent shorting the diode.
For our ideal diode, if $V_{\text {diode }} \geq 0.6 \mathrm{~V}$, then the diode is on and fully conductive; otherwise, it does not conduct at all. 5

So, since $V_{\text {diode }}=V_{\text {out }}$, any time $V_{\text {out }} \geq 0.6 \mathrm{~V}$, the diode will conduct and $V_{\text {out }}$ will be clamped to 0.6 V . As such, our voltages are as shown in Figure 4 below. 15

Figure 4: Plot of $V_{\text {in }}$ and $V_{\text {out }}$ for Problem 3.

Problem 4. 15

We have a constant function, and want to find the Fourier transform.
To take the Fourier transform of $f(t)=1$, we apply the formula on the fifth line of the front of the formula sheet, 5

$$
\begin{align*}
F(\omega) & =\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t \\
& =\int_{-\infty}^{\infty} 1 e^{-i \omega t} d t \tag{14}
\end{align*}
$$

Using the second-to-last equation on the back fo the formula sheet, 10

$$
\begin{align*}
\delta\left(x-x_{0}\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d y e^{-i\left(x-x_{0}\right) y} \tag{15}\\
& \Rightarrow F(\omega)=2 \pi \delta(\omega)
\end{align*}
$$

